Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ray J. Butcher,^a* C. George,^b Nicole Muratore^c and Andrew P. Purdy^c

^aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^bLaboratory for the Structure of Matter, Naval Research Laboratory, Washington, DC 20375, USA, and ^cChemistry Division, Code 6120, Naval Research Laboratory, Washington, DC 20375, USA

Correspondence e-mail: butcher@harker.nrl.navy.mil

Key indicators

Single-crystal X-ray study T = 103 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.023 wR factor = 0.058 Data-to-parameter ratio = 19.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved In the title complex, $[InCl_3(C_{15}H_{11}N_3)]$, the mutually *trans* bond lengths In-N [2.2438 (16) Å] and In-Cl [2.4080 (5) Å] are shorter than the other In-N and In-Cl bonds (each *trans* to their own kind). This *trans* influence was observed earlier in d^{10} metal complexes of 2,6-di-2-pyridylpyridine. The crystal structure of (I) is stabilized by extensive intermolecular C-H···Cl hydrogen bonding.

Received 30 September 2003 Accepted 23 October 2003 Online 8 November 2003

Comment

The structures of five metal complexes of 2,6-di-2-pyridylpyridine (tpy) with stoichiometry $M(tpy)Cl_3$ have been previously reported for M = Ga (Beran *et al.*, 1970), M = In, Tl (Palenik & Dymock, 1974), M = Ru (Laurent *et al.*, 1999) and M = Os (Demadis *et al.*, 1999).

In the case of M =In [Palenik & Dymock, 1974; Cambridge Structural Database (CSD; Allen, 2002) refcode TERPTL], only the cell parameters are available. It has been noted in the above structures that there is a significant trans influence observed in both the M-N and M-Cl bond lengths. This is manifested in differences between the mutually trans M-Nand M-Cl bond length compared to the other M-N and M-Cl bond lengths. This effect appears to be different in d^5 metal complexes compared to d^{10} complexes. Prior to the present structure determination, there was only one such example of the latter type of complex, namely Ga(tpy)Cl₃ (Beran et al., 1970). In this structure, the mutually trans Ga-N and Ga-Cl distances are 2.034 (7) and 2.235 (8) Å, respectively. The remaining two Ga-N and two Ga-Cl distances are 2.110 (6)/ 2.115(6) and 2.329 (3)/2.403(2) Å, respectively. Thus, in this instance, the trans influence is manifested by a shortening of the Ga-N and Ga-Cl bonds compared to the non-trans bonds. This is contrasted with the trans influence observed in $M(tpy)Cl_3$ complexes of d^{10} metals, such as Os^{III} (Demadis *et* al., 1999) and Ru^{III} (Laurent et al., 1999). In these complexes, there is a similar shortening of the M-N distances $[Os-N_{trans}]$ = 1.969(3) Å compared to 2.075(3) and 2.077(3) Å; Ru- $N_{trans} = 2.061$ (6) Å compared to 2.060 (8) and 2.093 (7) Å]. However, the *trans* influence in the M-Cl distances in these d^{5} metal complexes is in the opposite sense to that observed in d^{10} metal complexes. In these complexes, the *trans* (to M-N)

Figure 1

View of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 20% probability level.

M-Cl bond lengths are longer [Ru-Cl_{trans} = 2.468 (2) Å and $Os-Cl_{trans} = 2.3833$ (9) Å] than the non-trans M-Cl bonds [Ru-Cl = 2.402 (2) and 2.424 (2) Å; Os-Cl = 2.360 (1) and2.3741 (8) Å].

The title compound, $In(tpy)Cl_3$, (I), is only the second d^{10} metal complex of tpy with an $M(tpy)Cl_3$ stoichiometry to be structurally characterized. In this structure, the In metal center has a psuedo-octahedral configuration with the three N atoms of the tpy ligand coordinated in a meridional fashion, with the others three positions in the coordination sphere occupied by the Cl ligands. The *cis*-Cl–In–Cl angles (Table 1) differ by less than 4°, while the *cis*-N–In–N angles differ by more than 17° from the ideal value of 90° for an octahedron, as a result of the constraints imposed by the tpy ligand. Further evidence of this distortion can be seen in the trans N-In-N and Cl-In-Cl bond angles $[144.73 (6) \text{ and } 176.11 (2)^{\circ}]$. The *trans* influence observed in In(tpy)Cl₃ is similar to that found in Ga(tpy)Cl₃. The mutually *trans* In–N and In–Cl bond lengths are shorter than the other In-N and In-Cl bonds [2.244 (2) versus 2.270 (2) and 2.277 (2) Å for In-N, and 2.4080 (5) versus 2.4735 (6) and 2.5155 (5) Å for In-Cl]. There is extensive intermolecular hydrogen bonding between the three Cl ligands and some of the H atoms of the tpy ligand (Table 2 and Fig. 2).

Experimental

In (0.0224 g), S (0.0193 g), ZnCl₂ (0.0130 g), 2,6-di-2-pyridylpyridine (0.009 g) and AuCl₃ (0.312 g) were mixed in a 3 mm ID/5 mm OD quartz tube with 50/50 ethylene glycol-water. The tube was sealed at a height of 15.5 cm (fill = 65%). The tube was counter-pressurized and heated in a Leco hydrothermal system to a hot-zone temperature of 466 K for 92 h. At the bottom of the tube was a mass of colorless crystals along with orange and black powders.

Crystal data

$[InCl_3(C_{15}H_{11}N_3)]$	$D_x = 1.862 \text{ Mg m}^{-3}$
$M_r = 454.44$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 5463
a = 8.4662 (6) Å	reflections
b = 14.1130 (9) Å	$\theta = 5.1-56.6^{\circ}$
c = 14.1329 (10) Å	$\mu = 1.95 \text{ mm}^{-1}$
$\beta = 106.2530 \ (10)^{\circ}$	T = 103 (2) K
$V = 1621.16 (19) \text{ Å}^3$	Triangular prism, pale yellow
Z = 4	$0.40 \times 0.35 \times 0.15 \text{ mm}$

Figure 2

The molecular packing of (I), viewed down the c axis.

Data collection

Bruker SMART CCD area-detector diffractometer	3965 independent reflections 3696 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.040$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.3^{\circ}$
(SADABS; Sheldrick, 1999)	$h = -10 \rightarrow 11$
$T_{\min} = 0.568, \ T_{\max} = 0.746$	$k = -18 \rightarrow 18$
12733 measured reflections	$l = -17 \rightarrow 18$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0247P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.024$	+1.37P
$wR(F^2) = 0.058$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} = 0.001$
3965 reflections	$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$
200 parameters	$\Delta \rho_{\rm min} = -0.38 {\rm e} {\rm \AA}^{-3}$

$\Delta \rho_{\rm min} = -0.38 \, {\rm e \, \AA^{-1}}$ Extinction correction: SHELXTL Extinction coefficient: 0.0014 (3)

Table 1

Selected geometric parameters (Å, °).

H-atom parameters constrained

In-N1A	2.2438 (16)	In-Cl1	2.4080 (5)
In-N1C	2.2697 (17)	In-Cl2	2.4735 (6)
In-N1B	2.2769 (17)	In-Cl3	2.5155 (5)
N1A-In-N1C	72.38 (6)	N1B-In-Cl2	88.15 (5)
N1A-In-N1B	72.41 (6)	Cl1-In-Cl2	93.21 (2)
N1C-In-N1B	144.73 (6)	N1A - In - Cl3	84.03 (4)
N1A-In-Cl1	174.05 (5)	N1C-In-Cl3	87.27 (5)
N1C-In-Cl1	104.84 (5)	N1B-In-Cl3	91.13 (4)
N1B-In-Cl1	110.41 (4)	Cl1-In-Cl3	90.629 (19)
N1A-In-Cl2	92.11 (4)	Cl2-In-Cl3	176.109 (18)
N1C-In-Cl2	91.11 (5)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C2A - H2AA \cdots Cl1^{i}$	0.95	2.71	3.664 (2)	178
$C2B-H2BA\cdots Cl1^{i}$	0.95	2.69	3.634 (2)	174
$C2C-H2CA\cdots Cl2^{ii}$	0.95	2.83	3.625 (2)	142
$C3A - H3AA \cdots Cl3^{iii}$	0.95	2.74	3.484 (2)	136
$C4B-H4BA\cdots Cl3^{iv}$	0.95	2.76	3.613 (2)	149
$C4C-H4CA\cdots Cl3^{v}$	0.95	2.75	3.432 (2)	129
Symmetry codes: (i) $x - \frac{1}{2}$.	$\frac{3}{2} - v_1 \frac{1}{2} + z$; (i	i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2}$	z = z; (iii) $1 = x, 2$	-v, 1-z; (iv)

Symmetry codes. (1) $x = \frac{1}{2}, \frac{1}{2} = y, \frac{1}{2} + z$, (1) $\frac{3}{2} = x, y = \frac{1}{2}, \frac{1}{2} = z$; (v) $\frac{3}{2} = x, \frac{1}{2} + y, \frac{1}{2} = z$.

All H atoms were fixed in calculated positions with C-H = 0.95 Å and with isotropic displacement parameters fixed at 1.2 times that of the atom to which they were attached.

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001; Sheldrick, 1999); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support from the Office of Naval Research, Mechanics Division. RJB acknowledges the ASEE/Navy Summer Faculty Research Program for support during the summer of 2003.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Beran, G., Carty, A. J., Patel, H. A. & Palenik, G. (1970). J. Chem. Soc. D, pp. 222–223.
- Bruker (2001). *SMART* (Version 5.624) and *SAINT* (Version 6.04). Bruker AXS Inc., Madison, Wisconsin, USA.
- Demadis, K. D., El-Samanody, E.-S., Meyer, T. J. & White, P. S. (1999). Polyhedron, 18, 1587–1594.
- Laurent, F., Plantalech, E., Donnadieu, B., Jimenez, A., Hernandez, F., Martinez-Ripoll, M., Biner, M. & Llobet, A. (1999). *Polyhedron*, 18, 3321– 3331.
- Palenik, G. J. & Dymock, K. (1974). Am. Crystallogr. Assoc. Spring Meet. Abstracts, p. 137.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison Wisconsin, USA.
- Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany..